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A numerical solution is provided for flow of a stream of water falling under gravity 
after emerging from a simple slit orifice in a vertical wall. The classical free-streamline 
flow with contraction coefficient 0.611 applies in the absence of gravity, or as F+ co, 
where F is the Froude number based on the net volume flux and the slit width. We 
assume here that F is finite, but find that the flow exists only for F 2 0.496, with 
initial backflow at the upper stream surface for 0.496 < F < 0.578. The limiting flow 
at F = 0.496 has a stagnation point at the upper edge. 

1. Introduction 
The flow in figure 1 is very familiar (e.g. Batchelor 1967, p. 496). In two dimensions, 

it represents efflux of incompressible inviscid water from a slit in a plane wall, 
neglecting gravity. The flow upstream appears as if due to a sink at the origin, but 
becomes a jet, with constant-speed free surfaces that detach smoothly from the edges 
of the slit. Far downstream, the jet asymptotes to  a straight uniform stream of width 
~ / ( 2  + R) = 0.61 1 times the slit width, this being the so-called ‘contraction coefficient’ 
of this particular orifice. The mathematical solution is well known and classical in 
two dimensions, and can be obtained in almost closed form via the hodograph 
transformation. Generalizations to more-complicated two- and three-dimensional 
orifices are easily obtained. Surface tension can also be included, but usually, and 
in the present work, is not. 

So much for flows in the absence of gravity. If gravity is present, it may simply 
accelerate the flow if it acts exactly parallel to the downstream jet (e.g. if the wall 
is horizontal), and some studies (e.g. Conway 1967; Keady & Norbury 1975) have 
been made of this class of problem. The situation can be considerably more 
complicated if the wall is not horizontal, and to keep the problem aa clear as possible, 
we treat here only the extreme caw of a slit in a vertical wall lying in x = 0, with 
gravity in the - y-direction. Now the emerging jet is distorted downward by gravity, 
and eventually falls aa an ever-thinner sheet in an asymptotically parabolic arc. 

It is appropriate to define the Froude number 

Q F=m’ 
where Q is the net volume efflux (per unit distance perpendicular to the plane of flow), 
g is the acceleration of gravity, and w the slit width. Then the classical flows in the 
absence of gravity are just the limit as F+ 00, and can be approximated in very 
high-speed situations. There have been many large-F asymptotic studies, of which 
that by Geer & Keller (1979) is representative, in which one matches the gravityless 
classical orifice flow of figure 1 to a ‘thin-jet’ theory for the falling stream far from 
the orifice. 
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FIGURE 1.  Classical free-streamline flow through an orifice, in the absence of gravity. 

Our present aim is to treat instead the case when F is not large, and this appears 
to demand a full numerical approach. We first describe the problem in a suitable 
hodograph-type representation, in which the dependent variable is the angle S(5) 
between the free surface and the z-axis, as a function of an independent variable E 
that lies within a finite interval 5, < 5 < E N ,  where = go < 0 is the top edge and 
5 = > 0 the bottom edge. The origin 5 = 0 represents the ultimate free-falling jet 
at y = -a. 

In terms of 8(5), the problem becomes that of solving a nonlinear integral equation, 
namely that which results from setting the free-surface pressure equal to the constant 
atmospheric value, surface tension being neglected. This integral equation is solved 
by simple discretization, collocation, and iterative solution of algebraic equations. 
Considerable care is needed to account for singularities at f = E0, &,, and 0, and results 
are obtained to about 3-figure accuracy with discretizations involving 100 or less 
points. 

For the particular problem of interest here, the computations show that solutions 
exist only for F 2 F,, where F, x 0.496. Solutions for F > F, involve tangential 
detachment from the edges, 80 that, for example, 8 = -in at = 5,. However, for 
F, < F < F,, where Fl x 0.578, the upper free streamline initially curves back, i.e. 
8 < -in and z < 0 for a range of 6 close to 5,. Finally, a t  F = F,, tangential detach- 
ment no longer occurs at the top edge, which becomes a stagnation point, with 
8 = - i x .  A separate numerical solution is provided for this limiting case, in which 
(in effect) the limiting Froude number F, itself is one of the unknowns of the 
problem. 

In practice, if the flow is slowed down to F < F,, where there exists no solution 
of the presently assumed type, some form of violent breakdown or ventilation may 
occur, in which surface tension and viscous effects, both neglected in the present 
theory, play important roles. Some simple observations of flows of this nature (Carrie4 
out using a box-like nozzle on a garden hose) suggest that the critical Froude number 
for ventilation is indeed close to F, = 0.5. Proper experimental verification would be 
not too difficult. 

There is a similarity between the present type of jet-like efflux flow and even 
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better-known efflux problems such as flow under sluice gates (see e.g. Budden & 
Norbury 1977) and over weirs (see e.g. Kandaswamy & Rouse 1957). The former 
configuration can be obtained by a simple modification of the present computer 
program, replacing the vertical lower half-wall by a horizontal full wall. Similarly, 
weir-like configurations can be obtained in the limit as the upper half-wall is taken 
away. Very recent work along these lines on both problems has been done by 
Vanden-Broeck (1986b), Vanden-Broeck & Keller (1986) and Goh (1986). 

2. Mathematical formulation 
We assume steady irrotational motion of an incompressible inviscid fluid in two 

dimensions. Thus the mathematical task can be described in terms of determination 
of suitable analytic functions of complex variables. The problem will be assumed to 
have already been rendered non-dimensional. In particular, we have set the net 
volume flux Q to unity and the water density (which plays no essential role here) also 
to unity. We make an arbitrary choice of lengthscale, and then determine the slit 
width w, as part of the solution of the problem. The Froude number F is thus also 
an output quantity, but is controlled by input values of gravity g. 

If $(x, y) is the velocity potential and $(x, y) the stream function, we use complex 
variables z = x+ iy and f = $ + i$. The flow takes place in the strip - 1 G $ < 0 in 
the f-plane, which we map to the lower-half [-plane by 

[ = -e-xf. (2.1) 
The flow domains in the z-, f- and [-planes are sketched in figure 2. Note that the 
ultimate free-falling jet lies at q5 ++ 00, which maps to the origin [ = 0 in the [-plane. 
The top and bottom edges of the slit are assumed to be at [ = 6, and [ = EN 
respectively, where 6, < 0 and sN > 0 are (given) real parameters. 

It is convenient to introduce a further complex variable, the logarithmic hodograph 

sz = log- df 
dz 

= 7-8,  (2.3) 
where q = e+ is the flow speed and 8 its direction. In  the first instance we seek the 
analytic function 51 = 51([). 

By considering the imaginary part - 6 of this variable, we can give an alternative 
real-variable interpretation of this task. That is, if [ = E+iV, we seek the harmonic 
function 6 = @,?I) in the lower-half plane 'I < 0. The boundary conditions on 'I = 0 

(2.4) 
consist of specifications 

and s=++t,  V = O ,  5 > g N  (2.5) 
of the flow direction on the upper and lower portions of the wall, and constancy of 

(2.6) the pressure, given by 
P = -h2-9Y 

on the free surface 'I = O,E, < E < EN. There is also a boundary condition at infinity 
in the [-plane, corresponding to the asymptote to a sink in the physical plane as 
x+- 00. This will be written in the form 

e=+,  q = o ,  [<go 

x(f)+O, 151+0O, 'I <o,  (2.7) 

where x = Q+log[+i$. (2.8) 



256 

E 

Y 

4 -- 
E. 0. Tuck 

G 

-c - 
G 

A B C 
__c - 

$ = - I  

I n  

FIGURE 2. Sketch of flow in (a) the physical z = z+iy plane, 
and mappings to (b )  f = $+i$ and (c) 3 = t + i v  planes. 

That is, 7+-1og IQ and B++x+arg 5. Note that an arbitrary choice of scale has been 
made at this stage, since i t  would be possible to allow x to tend to a real constant 
other than zero and still retain a sink-like behaviour. 

The above boundary-value problem is nonlinear because of the free-surface 
condition (2.6), and indeed that condition requires considerable further discussion. 
In  the first place, it involves two quantities q and y that do not have an immediately 
obvious relationship to the fundamental variable 0. To find the speed q, we need to 
find the harmonic conjugate 7 to 0, and this can be done formally by use of Cauchy’s 
theorem. It is convenient to use the variable x([) defined by (2.8), since this vanishes 
at infinity in the lower-half 5-plane. Thus, for real 5, we have 
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with a Cauchy principal-value interpretation. Substituting back for sh from (2.8) and 
taking the real part yields the required relationship, namely 

(2.10) 

The boundary conditions (2.4) and (2.5) on the wall have been used to convert the 
infinite range of integration in (2.9) to the finite range (to, &) in (2.10). We have also 
taken the liberty of writing 7(g) and 8( [ )  for 7(5,0) and 8(5,0) respectively, since 
from now on all computations will be confined to the boundary t j  = 0. Once t9 = 8( [ )  
is known on the free surface 5, < 5 < tN, (2.10) formally provides 7 on the free 
surface, and hence p = eT for use in (2.6). 

We still need the y-coordinate, for the hydrostatic part of the pressure. This is 
obtained by integrating (2.2), i.e. 

z = e-*df s 
or (2.11) 

assuming without loss of generality that the top edge 3 = 5, is chosen as the origin 

(2.12) 

A combination of (2.10) and (2.12) yields y, once 8(5) is known, and thus the pressure 
is fully determined. 

The whole problem has thus reduced to a nonlinear integral equation, namely to 
determine 8 = 8(5),5, < 5 < EN, such that p = constant, where p is given by (2.6), 
with q and y determined from 8(5) via (2.10) and (2.12). An important feature of this 
formulation is that this ‘constant ’ value of p must itself be determined as part of 
the solution process. 

Several points must be clarified before numerical solution of this integral equation 
is attemped. There are mild local singularities in 8(5) and 7(5)  at = to,& and 0. 
The edge singularities at 6 = 5, and 6 = EN are normally simple smooth-detachment 
conditions, with continuous slope but infinite curvature. For example, as g+co, 

8 + +t + o( g - go);, (2.13) 

and 7 is bounded. However, in the special caae (see later) where a stagnation point 
occurs at 6 = E,, 8(5,+0) =#= 8(5,-0) = -@, and 7 is unbounded, but the singularity 
is still only logarithmic, so Cauchy’s theorem remains valid. 

The singularity at 5 = 0 models the ultimate free-falling jet, and has a complicated 
structure, but is very mild as far as Q(f)  itself is concerned. Thus, aa 5+0, we have 
8+-$, while 7++m like ‘loglog151’. However, a major difficulty occurs with 
(2.12), in which the ‘stretching’ factor ‘ -x5’ in the denominator makes it essentially 
impossible to integrate through 5 = 0. Instead, we use (2.12) only for 6 < 0, and write 
for 6 > 0 

(2.14) 

This has ‘solved’ the problem at the expense of introducing the so-far unknown 
y-coordinate y(&) = - w of the lower edge. The latter is itself determinable from a 
knowledge of 8( [ )  by integrating upstream. 
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To do this, we first fit an extended representation 

7 = -1og)31+~g-1+~5-2+0([-3) (2.15) 

of the asymptotic sink-like behaviour far upstream (cf. (2.7), (2.8)) to computations 
from (2.10) for large negative [, i.e. far up the upper wall, so determining the real 
constants A and B. An equivalent representation of the actual physical-plane variable 
z = x+iy far upstream is 

xiz = [ - A  log[+xi+C+ (B-!jAe) c-1+O([-2), (2.16) 

where C is another real constant, determined this time by fitting to computations 
from (2.12). But (2.16) applies not only for real [as [-+-a, but also as I f l j . 0 0  at 
any non-positive angle, and in particular applies for large real positive 5, i.e. far down 
the lower wall. Hence it must also fit to computations from (2.14) for large positive 
[, and this immediately determines ~ ( 5 ~ ) .  

Although we have concentrated on the y-coordinate, since that plays an immediate 
role in determining the pressure, it is convenient and computationally efficient to 
determine simultaneously the x-coordinate, and in particular ~ ( 6 ~ ) .  Since there is no 
reason in general to expect that the latter quantity will be zero (indeed, it is clear 
from (2.16) that x(&) = - A ) ,  we are not really solving for flow through a slit in a 
plane wall, but rather for a more general geometrical configuration, involving two 
plane parallel walls. The special case x(CN) = 0 when the offset between these two 
walls is zero, is available to us by suitable choice of the input parameters 5, and EN. 

3. Numerical method 
The nonlinear integral equation p = constant converts to a set of N nonlinear 

algebraic equations in N unknowns, if we approximate integration by summation 
in a suitable manner. First we must select a set of interval end-points 
[ = t , , j = 1 , 2  ,..., N-1, where [ , [ o < ~ < . . . < [ ~ - ~ < [ ~ ,  and then we let 
8, = 8(E,),j = 1,2, ..., N-1, be N-1 of these unknowns, the Nth being the value of 
the pressure p on the free surface. Now, in order to evaluate the Cauchy principal- 
value singular integral in (2.10), we approximate 8(5) as varying linearly on the 
interval (&l, t,), and evaluate the integral over each such interval exactly. This can 
be done at  any value of [, and we choose to do it on a separate grid y = &, where 
&-, < [$ < &, with ct close to the mid-point of the ith interval. Thus now 7(&) can 
be computed as a linear sum over values of 8,. 

Similarly, the integrals (2.12) and (2.14) determining the y-coordinate of the free 
surface can be evaluated by a numerical quadrature on either of the above grids. Since 
these are non-singular integrals, the ordinary trapezoidal rule is satisfactory, and was 
applied on the [-grid. For this purpose, it  was also necessary to interpolate linearly 
the 8-values from the f-grid. For y > 0, (2.14) needs a value of y(EN), and this is 
obtained by the upstream integration described above. 

In  fact, the numerical determination of y ( t N )  consumes a significant proportion 
of the total computer time. The integral (2.10) for 7 is evaluated for large 131, and 
results from it are then used in (2.12) and (2.14), also for large 14. The latter 
integrations in [ < 5, and [ > EN were done by Simpson’s rule on an equally spaced 
grid with an interval of the order of 0.1 times (tN-[,), adequate for five-figure 
accuracy. In  order to maintain the same accuracy in fitting to the far-field 
representations (2.15) and (2.16), we need to integrate as far a~ the order of 100 times 
(EN - 60) * 
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Once all of the above numerical integrations are performed, we have in effect a 
function subroutine that determines N functions 

&Cej) = P ( 8 j ) - 8 N  (3.1) 
of the N unknowns O1,Ba, ..., ON-,  and 8 N ,  remembering that 8, is the to-be- 
determined constant value of the free-surface pressure. Our final numerical task is 
to solve the equations & = 0, for which there are many good methods. Some success 
was achieved with the packaged (IMSL) routine ‘ZSPOW ’, but a ‘custom-built ’ 
approximate Newton iteration procedure proved as satisfactory and a little faster. 
At any fixed value of N, it is only necessary to solve these equations to an accuracy 
a little better than that required in the final answers, and we demand the same 
five-figure accuracy here as in the numerical integrations already performed to 
determine y ( EN ), 

The real accuracy question then relates to the error in the fundamental dis- 
cretization, i.e. to the extent and rate of convergence as N+m. This is in turn 
affected by the choice of the grids {Ej} and {&}, a matter that has been so far left open. 
Any reasonable grid allows convergence of some sort, but only if the grid is suitably 
non-uniform, with points concentrated (correctly) near the singularities at 5 = E,, E N ,  
and 0, can a rapid rate of convergence be achieved. 

For the most part, we use the choice (cf. Goh & Tuck 1985) 

E,=[,[O-~’~, j= 1 , 2  ,..., M-1, (3.2) 
where a is a positive constant assigned below, and M -  1 < N is the number of interval 
end points on the upper free surface, N - M  being on the lower free surface. (We 
generally use M values about 60 % of N, since the upper free surface is more ‘ busy ’ 
than the lower.) The Mth end point EM = 0 is placed exactly at the origin in the 
[-plane, i.e. at downstream infinity. For j > M, we replace j in (3.2) by N - j ,  [, by 
E N ,  and use a different constant a. The equivalent ‘quasi-mid-point’ grid {&} is 
obtained by replacing j by i-4 in the above. The constants a are determined by 
demanding that the two quasi-mid-points that are closest to the origin [ = 0, namely 
5 = cM and 6 = &+I, be a prescribed (equal) small distance E from it. For example, 
to use in (3.2) f o r j  < M ,  we set 

(3.3) 
1 a = -- ( M  - +)”log ( -;)a 

Then, the points cM = - E and cM+, = + 8 map in the physical plane to the furthest 
points downstream, on the upper and lower free surfaces respectively, and the small 
parameter E controls the effective downstream truncation point. 

The grid (3.2) accounts for a square-root singularity at 5 = 5, and 5 = E N ,  and a 
logarithmic singularity at 5 = 0. In  fact, the exponential character of the grid near 
5 = 0 models a uniformly spaced grid in terms of the original potential #. We use 
values of E of the order of so that # is only as large as the order of 5 at the 
downstream truncation point but this is enough for negligible (to five figures) 
upstream influence of that truncation. This is in any case what one should expect, 
since such an influence arises from a contribution from an interval of length of the 
order of 10-6 to the integral (2.10). Because E is 80 small, it is not too critical to build 
the aaymptotic form of the far-downstream jet into the model. In  fact, we allow the 
program to determine a value of OM = &EM) for itaelf, even though we know that 
O(0) = -*. The output value of 8,  can be thought of aa the mean flow direction 
across the jet at the downstrea,m truncation section, and it is generally quite a bit 
less negative than -in, as the results to follow show. 
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FIGURE 3. Output critical (minimum) Froude number F, for flow with stagnation point, 
aa a function of the number N of points into which the free surface is discretized. 

The above grid is used for cases where tangential detachment occurs from the wall 
edges, which is most of the time. In practice, given a specification of the locations 
6 = 6, and 6 = 6,  of these edges, we input the gravity parameter g, small at first, 
so that the classical solution yields a good starting guess for the unknowns 8,, then 
slowly increase g using the converged solutions at lower g as a new starting guess. 
Once converged results are obtained at any g, the slit width w = -y(EN) is available 
to give the Froude number F defined by (1.1) (with Q = l) ,  and the output 
(2, y)-values along the free surface can also be re-scaled by dividing by w. 

The process of increasing g eventually fails at some g to yield convergence of the 
algorithm for solution of the nonlinear algebraic equations. It is believed that no 
solution then exists to these equations, and by implication, to the original continuum 
problem, at this and all higher values of g. 

This breakdown is signalled by a rapid decreaae of ~ ( 5 ~ )  toward - m, indicating 
a trend toward a stagnation point at 6 = 6, at which tangential detachment no longer 
occurs. A separate program was written to solve the problem at the critical value 
of g, in which such a stagnation point was assumed to exist. In  this program, we can 
no longer assign the last unknown 8, to be the free-surface pressure, since the latter 
quantity is now necessarily zero. Instead, and with no extra difficulty, we use as our 
last unknown 8, = g itself, so determining the critical value of g directly, and hence 
(after suitably re-scaling) the critical Froude number F,. 

Although this special stagnation-point program worked as described above with 
no further changes, in order to achieve the same accuracy as the non-stagnation 
program, some adjustments in the grid and the numerical integration procedures were 
needed. It is not hard to see (e.g. Grant 1973; Goh 1986; Vanden-Broeck 1986~) that 
when there is such a free-surface stagnation point, the velocity q = eT behaves like 
(f-6,)t near 6 = go, and hence a cubic rather than a quadratic grid is needed. This 
is easily accomplished by replacing the power 2 by 3 in (3.2) and (3.3). At the same 
time, the integration in (2.12) needs to recognize the fact that its integrand has an 
inverse cube-root singularity, and a simple modification of the trapezoidal rule was 
implemented for about the first M/4 intervals. 

The net effect of all of the above-described numerical approximations waa to 
achieve an error decay like F2 for both types of program. This is confirmed by 
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FIGURE 4. A typical computed flow from an s-wise offset orifice. 

I 
F'IGURE 5. Efflux at a relatively high Froude number F = 1.150. 

figure 3, which shows that the h a 1  output Fo from the stagnation-point program is a 
linear function of N-*. Extrapolation to N-* = 0 gives Fo k: 0.4958. Three-figure 
accuracy is available even without extrapolation, from about N = 60 up. It is worth 
commenting that the somewhat similar numerical method used by Goh & Tuck 
(1985) achieved only N-' convergence, mainly because a tangential differentiation of 
the Bernoulli free-surface conditions was used. The price paid for a better convergence 
rate in the present work is the computer time needed to evaluate y(&), and this 
appears to be a price worth paying. 

4. Results 
As noted in $2, for a general input free-surface segment CEO, E N ) ,  the horizontal 

offset x(") between top and bottom walls cannot be expected to be zero. Without 
loss of generality, we can always take tN = 1.0, and then the flows of interest have 
5, < - 1.0. In  such cases, if g is small, ~ ( 6 , )  > 0 and the offset orifice tends to throw 
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FIGURE 6. Efflux at a moderate Froude number F = 0.728. 

FIGURE 7. Efflux at F = 0.578, where the curvature vanishes at upper detachment. 

the emerging jet upwards. A t  g = 0, this upward motion necessarily continues 
for ever, but for small g > 0 the jet eventually starts to fall. For example, figure 4 
shows results from (to, E N )  = (-  2.6,l.O) at g = 0.4, for which (x(&), y&)) = 
(0.6149,1.3252). 

If we now increase 9, the offset x(&) will decrease, and a t  some value of g 
(determined by trial and error), will pass through zero, so yielding solutions for 
the problem first posed, namely flow through an orifice in a plane vertical wall. 
Figures 5-8 show flows of this nature at various Froude numbers. For example, that 
in figure 8 is, like that of figure 4, for ( E 0 , & )  = (-2.6,1.0), but for a much higher 
effective gravity, namely g = 1.901, sufficient to eliminate any tendency of the jet to 
rise. Each of the flows in figures 5-8 corresponds to a different value of 6,. As Eo 
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FIQIJRE 8. Efflux at F = 0.608, with backflow after initial tangential upper detachment. 

FIGURE 9. Efflux at F = F, = 0.496, with a stagnation point at the upper detachment, 
the free streamline there making 120° with the wall. 

decreases, it becomes more and more difficult to achieve a zero offset a&,,) a t  
g-values below that a t  which a stagnation point develops, and in fact that shown in 
figure 8 is the nearest to stagnation that was attempted using the non-stagnation 
program. 

The reason for the difficulty as stagnation conditions are approached is clearly that 
large curvatures are induced, the upper free surface being forced to detach 
tangentially, i.e. vertically downward, but then to curve backwards quickly before 
reversing curvature to flow down and out. Backward flow occurs for F < 0.578, and 
the flow of figure 7 marks the borderline between flows that do and do not have an 
initial backward motion near the upper detachment point. 
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The downstream truncation point shown by the termination of the above figures 

on the right is that corresponding to E = Reduction of this parameter below 
lod6 serves mainly the purpose of displaying more of the downstream jet, without 
significantly affecting the accuracy of the computation, and is hardly worthwhile. 
Note that even though our computations extend to within 10 = of the point 
g =  0 that maps downstream infinity, the jet is still very far from being well 
approximated by a thin parabolic arc at the truncation section. 

Finally, figure 9 shows the limiting flow at F = I$ x 0.496, with a stagnation point 
at 6 = to, and detachment at t9 = -& 
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